
REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-01-
Public reporting burden for this collection of information is estimated to average 1 hour per response, including tr
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send co
collection of information, including suggestions for reducing this burden, to Washington Headquarterf Services, C
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Manageme*-and budget, Paperwork .

0^5^
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FINAL 15 April 1998- 14 November 2000
4. TITLE AND SUBTITLE
Community Builder: Structuring Agent ARachitectures to Facilitate Domain Task

6. AUTHOR(S)

Caroline Hayes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Minnesota
Office of Research & Technology Transfer Admin.
1100 Washington South Suite 201
Minneapolis, MN 55415-1226

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
801 N. Randolph Street Room 732
Arlington, VA 22203-1977

5. FUNDING NUMBERS
F49620-98-1-0371

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-98-1-0371

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
AIR FftRP.F OFFICF OF SCIFNTIFIC RESEARCH (AFOSR)

T«f»rOTtrN

fl'str/but'on unlimited

NOTICE OF TRANSMITTAL DTiC.
HAS BEEN REVIEWED AND
LAWAFR190-12. DISTRIBUTION If UNLIMITED,

IS APPIiOVED FOR PUBLIC RELEASE

CODE

13. ABSTRACT (Maximum 200 words)
The results of this work include 1) Community Builder, a design methodology to assist software designers in designing mixed
initiative, multi-agent intelligent decision support systems (DSSs), 2) Development of architectures for multi-agent decision
support systems in several task domains and 3) Dyna-plan, a reusable framework describing the generic reasoning cycle used
in most dynamic and uncertain environments. As the complexity of computing needs continually increases, multi-agent
systems are becoming indispensable as approaches for making complex systems modular and manageable. However,
designing effective organizations for multi-agent systems is far from simple. Each time an agent-based system is designed to
support a new task, designing an effective architectural structure for the system of agents that works effectively for the task is
difficult and time-consuming. The aim of the Community Builder and methodology is to provide software designers with a
descriptive design methodology that will help them to identify the domain specific constraints on the agent architecture, and to
organize the agents accordingly. The aim of the DynaPlan framework is to capture some of the structure common to many
planning under uncertainty domains so that other developers can re-use some of the knowledge that we have gained in
building related domains.

14. SUBJECT TERMS 20010905 126 15. NUMBER OF PAGES

15
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Community Builder:
Structuring Agent Architectures

to Facilitate Domain Tasks

Final Report
Project duration: April 1998 - November 2000

Caroline Hayes
University of Minnesota,

Minneapolis, MN.
Grant number: AF/F49620-98-1-0371

Sponsored by AFOSR Program:

"Intelligent Agents for Air Force Battlefield and Enterprise
Integration"

Abstract

The results of this work include 1) Community Builder, a design methodology
to assist software designers in designing mixed initiative, multi-agent intelligent deci-
sion support systems (DSSs), 2) Development of architectures for multi-agent decision
support systems in several task domains and 3) Dyna-plan, a re-usable framework de-
scribing the generic reasoning cycle used in most dynamic and uncertain environments.
As the complexity of computing needs continually increases, multi-agent systems are
becoming indispensable as approaches for making complex systems modular and man-
ageable. However, designing effective organizations for multi-agent systems is far from
simple. Each time an agent-based system is designed to support a new task, designing
an effective architectural structure for the system of agents that works effectively for
the task is difficult and time-consuming. The aim of the CommunityBuilder method-
ology is to provide software designers with a descriptive design methodology that will
help them to identify the domain specific constraints on the agent architecture, and
to organize the agents accordingly. The aim of the DynaPlan framework is to capture
some of the structure common to many planning under uncertainty domains so that
other developers can re-use some of the knowledge that we have gained in building
related domains.

1 Introduction
In this work we have developed 1) the CommunityBuilder Methodology, to help design-
ers of multi-agent intelligent decision support systems identify domain-related archi-
tectural constraints, 2) portions of various decision support systems and architectures
including MAPP, DIOS, and Joint-Advisor 3) DynaPlan, a re-usable framework which
provides a generalized description of the cycle of activities involved in planning and
reasoning under uncertainty.

Decision support systems (DSS) are software systems using a wide variety of tech-
niques, including visualizations, task-oriented editors, and computational analysis,
which can help people make decisions faster or better. Decision support systems are
becoming increasingly necessary in complex military, engineering, and other decision
making tasks to make prevent information overload, and to make rapid response pos-

sible.
Intelligent decision support systems are those that perform some part of the prob-

lem solving for the decision maker. They may completely automate all of the decision
making (as was the case with old-style expert systems), or they may operate as intel-
ligent assistants that provide solution options, evaluations, or critiques to the decision
maker. This second style of decision support systems are typically much more accept-
able to decision makers because they leave control of critical problem solving tasks and
final decisions in the hands of the human.

Intelligent decision support systems are often designed in the form of single or mul-
tiple intelligent agents that provide advice. Additionally, since most complex problem
solving is not done by individuals but by teams, decision support agents that can
provide collaborative support to teams are becoming increasingly important.

Assumptions. All complex decision making tasks have an information-dependency
structure. For example, decision A may produce information that allows decision B to
be made, which in turn produces information that allows decision C to be made. An
assumption behind this research is that when designers of multi-agent systems under-
stand the information-dependency structure of a task, they can make better decisions
about how to assign decision-making tasks to the various agents, so as to maximize
design goals such as minimization of inter-agent communications, or maximization of
individual agents' abilities to function independently, etc.) CommunityBuilder is a
design methodology intended to help software system designers identify constraints
placed on the agent architecture by the information-dependency structure of the task.
By helping designers to identify these constraints, CommunityBuilder facilitates de-
signers' efforts to create effective agent-architectures that best meet their design goals.

2 Background and Motivations
This work focuses not just on constructing multi-agent systems, but more specifically
on multi-agent systems in complex, single and multi-user, intelligent decision support
systems (DSSs). Intelligent decision support is an emerging technology that combines
automated problem solving techniques artificial intelligence (AI) and operations re-
search (OR) with human computer interaction (HCI). The difference between decision
support systems and older style expert systems is that unlike expert systems that solve
problems for users, a decision support system works jointly with users to arrive at a

solution. A DSS may have an AI or OR algorithm embedded within it to generate
or evaluate solution alternatives, but the human has ultimate control over the devel-
opment of the final solution. This is essential both in making systems flexible, and
acceptable to people.

Engineering and other decision making tasks have become increasingly complex
to the point where decision support is almost required to generate solutions quickly
and accurately. Complex tasks typically require the collaboration of many specialists.
Similarly decision support systems typically require the collaboration of many computer
agent specialists. Thus, agent-based system design is an important part of decision

support design.
However, constructing a specific agent architecture to best support a specific deci-

sion support task depends heavily on the nature of the task domain. Each domain has
a specific task and information structure. This structure places strong constraints on
how tasks can effectively be assigned to agents and what communication needs to occur
between them. We will refer to portion of the agent architecture that is structured by
these constraints to be the task layer. The CommunityBuilder methodology provides
a design process that can guide designers of multi-agent decision support systems in
eliciting these constraints. The DynaPlan framework generalizes the common proper-
ties of a family of domains, with the goal of facilitating re-use of these common parts
for similar task-domains.

3 Objectives
• To assist the developers of multi-agent decision support systems in analyzing task

and agent needs,

• To assist in design of a multi-agent system's task layer to support those needs,

• To facilitate rapid updating or adaptation of an existing systems task layer to
suit the needs of a new application a closely related domain.

4 Approach
Our approaches for accomplishing these objectives are tightly inter-related. All results
grew out of the in depth study and development of architectures for a number of exist-
ing decision multi-agent decision support systems: MAPP, Fox, and CoRaven. MAPP
is a decision support system to assist engineers in creating manufacturing plans, FOX
assists battlestaff to rapidly develop course of action plans, and CoRaven helps intelli-
gence analysts to plan and analyze battlefield information. We chose to look at these
particular DSS tool and domains because they were domains with which we already
had experience that could be leveraged. Learning a new complex experience-centered
domain typically requires several years, so leveraging existing experience was essential.
We also hoped that by focusing on a military domain, to facilitate construction of tools
that would be of interest to the Air Force and the armed forces in general.

By generalizing the structure of these domains, we produced DynaPlan, a re-usable
framework intended for use by DSS designers as general template describing the the
reasoning cycles in uncertain environments for many domains. By recording the design

Figure 1: Overview of the Iterative DAISY Methodology

process used to create these DSSs we produced the CommunityBuilder Methodology.
Like military doctrine, the CommunityBuilder methodology is intended to be viewed
as a set of guidelines for DSS designers. It is not prescriptive but descriptive of what
successful multi-agent DSS designers do when developing system architectures. As
practices change, so should the methodology description.

5 Research Accomplishments

5.1 CommunityBuilder Design Methodology

The CommunityBuilder methodology is closely related to many cognitive-engineering
methodologies [1, 14] which are commonly used for building decision support and
human-computer interfaces. This type of design is also often called human-centered
design. In particular, CommunityBuilder extends the the DAISY methodology. [5].

DAISY (Figure 1) is aimed specifically at assisting in design of a single decision
support agent that interacts with an individual user. It assists software designers in
understanding where users might desire or benefit from decision support, identifying
what functions the decision support agent should perform, and what type information

I. Build Ideal (or Expert)
Task Model

a. Observe expert problem solving

b. Identify low-level tasks, data, etc.

c. Aggregate tasks (time/activity matrix)

d. Identify Information dependencies
between aggregate tasks, etc.

5. Design Human-Computer Interfaces

a. Identify single and
bi-directional
information dependancics
between computer agents

b. Identify ordcrings between
human and computer agents.

c. Determine the number of interface
packages required.

d. Identify the data structures exchanged
between human and computer
In each package

2. Identify User Group's Needs

a. Build user task model

b. Find differences: expert vs user

c. Note user group's errors, difficulties
and expressed support desires.

d. Note user's dcslrcs/nccds
for control of tasks and outcomes.

^ O

x • X=D,FF
Expert User

3. Design Work Modules

i. Select needs to be
addressed by DSS and
performance parameters.

b. Allocate functions to users & agents
(We recommend following a
strategy of "computer parsimony"

c. Identify work modules

4. Design Inter-Agent Communications

'W i. Identify single and

bi-directional

information dependancics

between computer agents

b. Identify necessary orderings between

computer agents.

Figure 2: Overview of the CommunityBuilder Methodology

the agent and the user need to exchange. DAISY was developed under Army funding1

to describe the development process followed to develop FOX [15]. Fox is a decision
support tool to help battlestaff rapidly develop a wide variety of friendly courses of
action.

CommunityBuilder (Figure 2) extends DAISY to address multiple decision support
agents, interacting with multiple users. Additional challenges raised in such systems
include selection of agents (and humans') roles such that work is made more efficient,
inter-agent communications are reduced, and inter-agent "thrashing" (passing of con-
trol back and fourth between agents many times due to poor division of labor) is

minimized.
DAISY'S contributions over typical cognitive engineering design methodologies are

that it focuses on techniques geared towards modeling very large scale, complex do-
mains in which problems solvers typically need to spend many years developing a high

^S Army Research Laboratory, Federated Laboratory Program, Cooperative Agreement Number
DAAL01-96-1-0003

level of skill in that type of problem solving. We call these experience-centered do-
mains. Design in decision support systems and human-computer interactions in these
domains presents very different challenges than do designing interactions in simpler
domains, such as interaction with an automated back teller machine. Additionally,
DAISY provides methods for identifying the specific type of support functions that
users at a given level of domain-experience will need. Understanding the needs of users
at different levels of advancement is critical in organizations in which high turn over
and training are large issues. The DAISY Methodology and the development of the
FOX COA generation tool are described in detail in [2].

CommunityBuilder's addition to DAISY is that it provides a systematic method to
handle the assignment of tasks to multiple agents using the constraints inherent in the
structure of the task-domain. A basic premise of this work is that those constraints are
generated by the inherent information dependencies between tasks which also impose
orderings between those tasks, and those constraints can be exploited to make effective
assignments of tasks to agents. This can help designers to better understand the trade-
offs in making specific agent/task assignments (such greater agent modularity at the
expense of additional inter-agent communications) so that they can make more effective
design choices.

5.2 MAPP Architectural Design (Veretennikov and Hayes)

The most effective way to study architectural design processes, is to do architectural
design (or re-design). In some cases, we created architectural descriptions of existing
software that been created "organically" over time, as various parts of the domain
were explored and understood. Thus a working DSS tool has evolved, but lacked
a "big picture." In others cases, we re-designed architectures to be used for later
software development. One of the first such architectures we explored was the MAPP
architecture.

MAPP (Manufacturing Architecture for Process Planning) is a multi-agent archi-
tecture to guide software developers in constructing single and multi-agent decision
support systems for assisting manufacturing planners in tasks such as feature extrac-
tion, operations, setup, and fixture planning.

Discoveries made through the MAPP architecture have been very important to the
development of CommunityBuilder because it is a domain in which it was very clear
that in-appropriate (but typical) assignments of tasks to agents can be demonstrated
to result in unnecessary backtracking and lower quality solutions. Typical assignment
of tasks to agents in automated planners has been by function. For example, all feature
extraction tasks may be handled by one agent, all setup decisions by another, and all
fixturing decisions by a third.

However, this "functional" division of tasks may not lend itself well to the informa-
tion structure of the tasks. For example, human problem solvers do not tend to make
all fixturing decisions contiguously. In practice, decisions centered around one topic
may need to be distributed through out many stages of problem solving. Some deci-
sions of a certain class may need to be made early so that they can supply information
for downstream decisions, while others in the same class may need to be delayed till
late in the process when sufficient information becomes available. For example, some
fixturing decisions provide information needed for setup sequencing, while setup se-

quencing provides information needed for detailed fixture planning. Grouping all tasks
relating to a single function in a single agent can cause reduced solution quality because
commitments must sometimes be made when insufficient information is available.

One approach that that some researchers have chosen to address this issue is to
allow the (single function) agents to freely pass control back and fourth [3]. However,
that practice can lead to unnecessarily complex control structures and much thrashing
between the agents.

We feel that a more suitable approach is to first understand the information struc-
ture of the tasks (which fixturing decision generates information needed to sequence
setups, etc.) and to assign tasks in a way that makes information flow between agents
as orderly as possible, which we have done in MAPP. This results in what may, on the
surface, appear to be a less intuitive assignment of roles to agents, for example a single
agent may be assigned to perform both early fixturing decisions and setup sequencing,
while another agent may be assigned to do the remaining detailed fixture design. In-
stead of being grouped by function, tasks are grouped and assigned to agents according
to the decision(s) they support. This results in a much smoother flow of control and

better solution quality.
This study and re-design of the MAPP architecture has enabled us to better un-

derstand the information structure of the decisions in this domain, and has resulted in
re-organization and reassignment of tasks among MAPP's agents (described in [17]).

Through an National Science Foundation Grant, we have created a software im-
plementation of the MAPP architecture. We are currently in the process of further
generalizing the MAPP framework by working with other manufacturing planning re-
searchers (Henderson, and Gupta) to combine MAPP with frameworks which these
researchers have developed. The goal is to make a very general framework to guides
software developers in creating automated planning and decision support software for
a wide range of manufacturing problems [11].

5.3 CoRaven Architectural Components
The insight gained from MAPP that information dependencies between tasks could be
used to guide assignment of tasks to agents, was an important part of Community-
Builder. However, we needed more than the design of one architecture in one domain
to create a methodology. Additionally, we explored decision support architectures in
a variety of decision support tools designed to assist battlestaff in various part of the
Deliberate Decision Making Cycle (DDMC).

Figure 3 shows a version of the DDMC used by all branches of the armed forces.
The dark boxes show the components addressed in this project. Specifically, the archi-
tectural designs of these components, the DIOS architecture, the Joint-Advisor archi-
tecture, and portions of the CoRaven Architecture were created or re-designed as a part
of this project focusing of multi-agent architectural design and methodology. Collec-
tively we refer to all these modules together as the CoRaven project. The architectural
designs of these DSSs were developed under this grant, focusing on architecture and
methodology development. However the majority of the software implementations of
these architectures were funded under a series of Army subcontracts focusing on tool
development, except when the function of the software was to explore high-level archi-
tectural issues such as agent integration, of experiments with star vs. federated control

c
c c c o

§ 8
3 +

■•o)

Q) «
E -^
(U ro

■5 <
cr xi
92 c tt (0
c a>
.2 .£
TO 0)
E £

£ CD

Commander's
goals Unit's

(Mission Statement) resources

I (_

Initial
enemy and
situation
information

Issue command

Generate Enemy CO As

(alternative hypotheses
on enemy actions)

(Fox)

Generate Friendly CO As
(i.e. alternative plans

for action)

±1
Identify Decisions

where situation
impacts action choice

2.
(Joint-Advisor)

PIR editor
Identify Information

that might reduce
uncertainty

(CoRaven)
Analyze Information

Narrow
Situation Hypotheses

c c _ra
Q_

c

o
V
Ö
Ü

3 o
X

LU

(DIOS/ICAS)

Generate information
collection

plan / schedule

Fuse information

Figure 3: Tools supporting the Deliberate Decision Making Cycle

of the agents. Fox, a tool developed under Army funding and discussed earlier is also
depicted in this diagram to show the inter-relations and synergies between the projects.

DIO architecture for Scheduling. (Ergan, Hayes).
The Dynamic Intelligence Operations (DIO) architecture DIO [4] is a general ar-

chitecture for scheduling information collection tasks. It differs from other scheduling
approaches in that its focus is on maximizing value of information gathered rather
than on maximizing factors such as throughput of operations. Typically, information
is gathered in order to make specific decisions. Furthermore, if that information is
to be useful, it must be gathered in a timely (i.e. obtain the information before the
decision has to be made) and reliable manner (send out multiple observers to obtain
really critical information), using the available resources in the most cost effective way
possible.

DIO was initially designed to apply specifically to scheduling of military
intelligence collection tasks. However, it is general enough to be applied to a a wide

range of information gathering tasks such as medical test scheduling (for time-critical
diagnostic purposes) or legal information gathering. A software implementation of
the DIO architecture, called Intelligence Collection Asset Scheduler (ICAS) has been

8

funded by the ARMY and has been demonstrated to produce effective collection sched-
ules. Ergan completed his thesis on DIO and ICAS in May 2000. A paper this work
has been submitted to IEEE SMC.

JointAdvisor Architecture (Penner, Hayes)
The CoRaven DSS was an intelligence analysis tool developed with the goal of

reducing information overload on intelligence analysts. It did so by using a Bayesian
Belief Network (BB) [10] to perform much of the work of analyzing battlefield data, and
determining which hypotheses about the enemy were most likely. However, analysts
found it hard to use this tool in this form because they found it difficult to follow an
analysis for which they had not created the logic themselves.

To address this issue, Penner and Hayes studied the existing CoRaven DSS, and
created a broader more encompassing architecture, and design for a new tool called
Joint Advisor. Joint Advisor added a "logic" editor to CoRaven's capabilities that
allowed analysts to enter and edit a logic tree containing their questions and hypotheses
about the enemy, (priority information requests), and the observations that they felt
would either support or deny each of these hypotheses. Penner produced a domain
model on which to base the design of JointAdvisor, designed the architecture including
packages and interactions, the interaction concept and the use model. This architecture
was later used in an Army funded project to guide the implementation of a Joint-
Advisor software tool.

5.4 Dyna-Plan (Hayes)
Dyna-Plan is a re-usable architectural framework that we developed by generalizing
the problem solving phases in the deliberate decision making cycle. After study of
several domains including military intelligence planning, and robotic sensor planning,
we realized that this cycle could form the basis of a description for a wide variety of
planning under uncertainty tasks.

A re-usable framework is not the same as re-usable software (although this is some-
times the case). Instead, it refers to a "road-map" or architectural structure of a
system: the agents, the tasks they perform, and the information exchange between
them. A re-usable framework saves the system designer time, by providing a system
design "template" capturing the common structure of a family of domains. Only min-
imal domain modeling and agent structure design will need to be done to create an
agent system architecture appropriate for the new domain with in the family.

Much work in planning under uncertainty focuses on specific techniques for rep-
resenting uncertain concepts [8], reasoning about uncertainty [9], or planning under
incomplete [12], uncertain [18] or dynamic [7] circumstances. However, little is writ-
ten about high-level strategies or the structure of problem solving under uncertain
circumstances.

After studying the structure of reasoning in military maneuver and intelligence
planning, which occurs in an highly uncertain and dynamic environment, it because
apparent to us that:

1. The structure of the over-all problem solving cycle (plan, gather information, re-
plan, etc) was as important to success (if not more important) than the individual

05
C

"c c
c o
TO '■*=

EL 3
§ 8 •j= UJ

3 +

c
03
E
a>

cr
a>
Q:
c
g
TO
E

c
'c c
_TO
a.
c o

'•s
0) — j +
o
Ü

Dyna-Plan

A Framework Planning and Reasoning Cycle
for Dynamic and Uncertain Environments

situation
goals resources information

I I 1
issue command

t
Generate

Situation hypotheses

action plan options

Choose Next
Action

Identify Decisions
where situation

impacts action choice

Identify Information
that might reduce

uncertainty

5
Generate information

collection
plan / schedule

Fuse information

Collect

Information

Figure 4: DynaPlan: A general framework for reasoning under dynamic and uncertain cir-

cumstances.

techniques employed, such as Bayesian Belief Networks, fuzzy logic, or certainty

factors.

2. Many reasoning under uncertainty domains have a very similar problem solving
cycle

3. It would be useful to many researchers and software developers to have a "tem-
plate" of that cycle available to them to assist them during development efforts
in understanding its various aspects.

Dyna-Plan is the framework we have created aimed at capturing the common
architectural process structure of for planning and reasoning under dynamic and un-
certainty circumstances in a wide range of domains. DynaPlan is outlined in Figure

4.
The major tasks in the Dyna-Plan architecture were derived and generalized from

the Deliberate Decision Making Cycle. The general cycle followed in Dynaplan is: gen-

10

erate several hypotheses about what the current (or past, or future) situation is, based
on currently available data; generate several plans to address each of those situations;
identify key pieces of unknown information that will help the planner identify which
plan(s) to follow; plan how to use available resources to get as much of that information
as possible; use the new information to narrow the set of situation hypotheses; if an
action must be taken now decide which one appears best given current information
and execute it; go through the planning cycle again.

An important aspect of the DynaPlan cycle is that the planning cycle for actions
under dynamic uncertain and uncertain circumstances has another planning cycle em-
bedded inside it: a planning cycle for focused gathering of information to reduce uncer-
tainty about what action to take next. DynaPlan both recognizes and highlights the
fact that focused information gathering is a powerful and general technique reducing

uncertainty.
Many problem solving cycles under uncertainty can be described by the DynaPlan

framework. Figure 5 shows an example of the DynaPlan framework instantiated for
the Medical domain. Not all domains will go through all stages listed in the DynaPlan
framework, some steps may be absent or less prevalent in some domains. However, the

over-all cycle will remain the same.
For example, robot motion planning follows the dynaplan cycle although, in some

cases the information planning phase is is less prevalent. This happens when the robot's
sensors have fixed capabilities, such as a simple touch sensor. When there are no choices
as to what to do with the sensors, planning of information gathering is unnecessary.
The only information gathering plan available may simply to be to read all the sensors.
However, for robots with more complex sensors, such as a robot with a camera that
can be aimed in various directions, the information (also known as sensor planning)
phase becomes more complex. Information collection planning is also required when
processing the information receive may exceed the robot's computational capabilities,
for example a driving robot may have to choose to process only one of several images,
or choose areas of a single image to process in order to avoid high speed collisions on

the highway.
DynaPlan Impact. By explicitly creating a generic framework that describes the

reasoning under uncertainty cycle, and by casting various domains into this frame-
work, we hope to make clear the connections and similarities between many diverse
planning domains: the military deliberate decision making cycle, robot motion and
sensor planning, medical diagnostic planning, geologic exploration planning, etc.

In the future, we also hope to associate various reasoning techniques with various
parts of the DynaPlan cycle. For example, many contingency planning techniques
[13, 16] can be viewed as different ways of accomplishing portions of the first DynaPlan
step: generate action plan options. Bayesian Belief nets or fuzzy logic [9] are examples
of techniques that might be used to perform the analyze information step. We hope
that by providing the framework, augmented with catalogs of techniques that have been
applied to various parts of the cycle, we can help to organize planning and uncertainty
work from many fields (robotics, operations research, artificial intelligence, military
science) into a common framework, and assist researchers in identifying techniques
from many disciplines that they might apply to their problems.

11

Dyna-Plan

Instantiated for Medical Diagnosis

c
'c
c

JCO

0.
c
o

goals:
Improve health
for least cost
and least discomfort

resources:
Medicines

situation
information
temp= 100
sore throat
tired

Prescribe treatment
Plan

Aspirin, fluids, rest
+ antibiotic

J I

u

c
CD

E
E
I °>
CD .§
X. CD

Q co
15 U

05
C
'c
c
.2

CO Q.

Gen. hypotheses and plans
flu-*-
cold-*' asPlrm> rest> fluids

strep -*- " + antibiotic

Choose Next

Action

T.
Identify Decisions

Administer antibiotic
or not?

Identify Information

Strep Bacteria Present?

Analyze Information

Strep? No Strep?

5

E

c

Info collection sched.
tl t2 t3 t4

quick
culture
temp M

At time tl: At time t4:
quick strep = negative culture = positive
temp =103.5 temp = 103.3

o
O

Collect
Information

Administer tests

Figure 5: DynaPlan instantiated for the medical reasoning domain

6 Lessons learned
Centralized control, processing, interface, communication/client record, data store, are

separate issues.
For decision support tasks, the organization of computer agents needs to closely

mirror organization of the human users.

7 Summary
The contributions of this work are to provide 1) CommunityBuilder, a systematic

methodology to help DSS designers identify, understand, and design for the informa-

tion structure of complex experience-centered domains, 2) a demonstration of Commu-

nityBuilder's effectiveness through development of as set of architecture for complex,

practical domains, and 3) DynaPlan, a re-usable framework capturing the generic struc-

ture of these domains to facilitate re-use of these knowledge gained in these efforts. The

12

expected impact is faster multi-agent DDS system development, better agent organi-
zations that work with rather than against the inherent task structure, and better
performing more usable DSS tools.

8 Primary People and Activities
• Caroline Hayes, Principle Investigator, research director, developed the Dyna-

Plan framework, which generalized CoRaven's structure and provides a general
template for iterative reasoning cycles in dynamic and uncertain situations.

• Nan Tu, graduate graduate research assistant, designed initial CoRaven architec-
ture, and developed "TasklCDA methodology," the first version of the Commu-

nity Builder methodology.

• Aleksey Veretennikov, graduate research assistant, extended MAPP architecture.

• Miner Liang, graduate research assistant, performed experiments with star and
federated control architecture for coordinating CoRaven agents.

• Hakan Ergan, graduate research assistant, designed the DIOS scheduling archi-
tecture, a portion of the CoRaven architecture.

• Li Lu, graduate research assistant, integrated all parts of the CoRaven framework
into a unified architecture.

• Robin Penner, Research Scientist, Designed the Joint-Advisor portions of the
CoRaven Architecture.

9 Publications and Theses supported in part or
whole by this grant.
Journal and Conference Papers

Hayes, C. C. and C. B. F. Brodie, "CommunityBuilder: A Methodology for De-
signing Mixed-Initiative Multi-Agent Systems," Intelligent Autonomous Systems (IAS)
Conference, Venice, Italy, July 25-27, 2000, pp. 736 - 743.

Hayes, C. C; N. Tu, H. Ergan, L. Lu, P. Asaro, P. M. Jones, "Model-Based De-
sign of Decision Support for Real-Time Information Assessment," IEEE Transactions
on Systems, Man and Cybernetics, Special Issue on Model-Based Design, editors C.
Mitchel and P. M. Jones, accepted for publication in 2002.

Ergan, H, and C. C. Hayes, "Design of a Decision Support System for Army Intel-
ligence Collection Resource Scheduling", Submitted to IEEE SMC.

A journal paper on Dyna-plan is in preparation.

Master's and PhD Theses

13

Nan Tu, PhD Thesis,
"TASK-ICDA: A Methodology for Developing Multi-Agent Multi-User Decision Sup-
port Systems", Expected defense, Sept 2001, Department of Mechanical Engineering,
University of Minnesota.

Hakan Ergan, Masters thesis
"Design of A Decision Support System for Army Intelligence Collection Resource
Scheduling" May 2000, Department of Mechanical Engineering, University of Min-

nesota.

Miner Liang, Masters thesis (plan B)
"MIMOSA and Concept-Linker: Map Tools for Facilitating Intelligence Analysis."
May, 1999, Department of Computer Science, University of Minnesota.

References

[i

[2]

[3]

[4]

[5]

[6

[7:

[9

[io;

R. W. Bailey. Human Performance Engineering. Prentice Hall, New Jersey, third

edition, 1996.

C. B. Brodie and C. C. Hayes. Daisy: A decision support design methodology for
large-scale, complex, experience-centered domains. IEEE Transactions on Sys-
tems, Man and Cybernetics, 2002. Special Issue on Model-Based Design.

M. Cutkosky and J. Tenenbaum. Towards a framework for concurrent design. In-
ternational Journal of Systems Automation: Research and Applications, 1(3):239-
261, 1992.

Hakan Ergan. Design of a decision support system for army intelligence collection
resource scheduling. Master's thesis, University of Minnesota, May 2000.

Carolyn Brittan Fiebig. DAISY: Designing Experience-Centered Decision Support
Systems. PhD thesis, University of Illinois at Urbana-Champaign, 1999.

C. C. Hayes, N. Tu, H. Ergan, L. Lu, P. Asaro, and P. M. Jones. Model-based de-
sign of decision support for real-time information assessment. IEEE Transactions
on Systems, Man and Cybernetics, 2002. Special Issue on Model-Based Design.

L. P. Kaelbling. An Architecture for Intelligent Reactive Systems, pages 713-728.
Morgan Kaufman, San Mataeo, CA, 1990.

L. V. A. Lakshmanan and N. Shiri. A parametric approach to deductive databases
with uncertainty. IEEE Transactions on Knowledge and Data Engineering,
13(4):554-570, July/August 2001.

G. F. Lugar and W. A. Stubblefield. Artificial Intelligence: Structures and Strate-
gies for Complex Problem Solving, second edition. Benjamin/Cummings Publish-
ing Company, Redwood City, CA, 1993.

O. J. Menshoel and D. C. Wilkins. Genetic algorithms for belief network inference:
The role of scaling and niching. Proceedings of the Seventh Annual Conference on
Evolutionary Programming, 1998.

14

[11] A. Montelaro, M. R. Henderson, C. A. Roberts, N. F. Hubele, C. C. Hayes, and
S. K. Gupta. A comparison method for automated manufacturability analysis
systems *amas). Submitted to Journal of Intelligent Manufacturing, expected
publication 2002.

12] D. Olawsky and M. Gini. Deferred Planning and Sensor Use, pages 166-174.
Morgan Kaufman, San Diego, CA, November 1990.

13] D. Payton. Exploiting plans as resources for action. In K. P. Sycara, editor,
Proceedings of the Workshop on Innovative Approaches to Planning and Control,
pages 175-180, San Diego, CA, November 1990. Morgan Kaufman.

14] J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein. Cognitive Systems Engineer-
ing. John Wiley and Sons, Inc., 1994.

15] J. L. Schlabach, C. C. Hayes, and D. E. Goldberg. Fox-ga: A genetic algorithm
for generating and analyzing battlefield courses of action. The Evolutionary Com-

putation Journal, 7.1, 1999.

16] M. J. Schoppers. Universal plans for reactive robots in unpredictable environ-
ments. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pages 1039-1046, Milano, Italy, 1987.

17] Aleksey Veretennikov. Providing clampability analysis for multiple fixtures to
support setup sequencing in process planning. Master's thesis, University of Min-
nesota, May 2000.

18] J. S. Zelek. A framework for mobile robot concurrent path planning and execution
in incomplete and uncertain environments. In Workshop on Integrated Planning,
Scheduling and Execution in Dynamic and Uncertain Environments, held at the
4th International Conference on Artificial Intelligence in Planning Systems, Pitts-
burgh, PA, June 1998. AAAI Technical Report WS-98-02.

15

